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Abstract 

 

 The Air Force Combat Climatology Center (AFCCC) is continually tasked to 

provide temperature and other long-range seasonal forecasts for locations at which 

Department of Defense (DoD) personnel are performing long-range exercises and real-

world mission planning support.  DoD needs long-range forecasts to estimate how much 

fuel is necessary to keep energy production, purchases and operations at the proper levels 

to accommodate all the energy needs on their installations and within their worldwide 

theaters of operation.  Currently, the best long-range temperature forecasts the weather 

community has for worldwide locations use either climatological standard normals or 

simple frequency distributions of occurrences.  This study creates a stepping-stone 

toward the solution of long-range temperature forecasting by finding a process to predict 

more accurate temperatures than those forecasts obtained using climatological standard 

normals or simple frequency distributions of occurrences.  This same solution is also 

highly sought after by many non-DoD users as well. 

 Northern Hemispheric teleconnection indices, created by rotated principle 

component analysis (RPCA), and the standardized Southern Oscillation index are 

statistically compared to Heating Degree Days (HDDs) and Cooling Degree Days 

(CDDs) at 14 U.S. locations.  HDDs and CDDs were summed over three-month periods 

to compute seasonal summations.  Teleconnection indices found to be leading modes, 

using RPCA, in a particular month are compared to the HDD/CDD summations of the 

following three months in order to create predictive models. 
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 First, linear regression is accomplished on the data.  The results show numerous 

valid modes, however, the percent of HDD and CDD variance resolved by the modes is 

rarely over 30%.  The HDDs and CDDs are then categorized and analyzed with a 

classification tree data-mining program, however, the results did not show any predictive 

quantitative information. 

 A regression tree data mining analysis is then performed on the uncategorized 

HDDs/CDDs, which shows excellent conditional predictive outcomes.  At each 

conditional outcome, a range of HDDs/CDDs is produced using the predicted standard 

deviations about the mean.  When teleconnection indices were used as predictors in the 

conditional model, 90% of the time the resulting HDDs/CDDs fell into the calculated 

range.  Expected forecast range reductions over climatology are then calculated, and an 

overall average expected forecast range reduction of 35.7% over climatology was 

achieved. 
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EXPLORATION OF TELECONNECTION INDICES FORLONG-RANGE  
 

SEASONAL TEMPERATURE FORECASTS  
 

 
 

I.  Introduction 
 
 
 

Background 
 

The Air Force Combat Climatology Center (AFCCC) is continually tasked to 

provide temperature forecasts for locations at which Department of Defense (DoD) 

personnel are performing long-range exercises and real-world mission planning support.  

The importance of these forecasts comes down to the cost of moving equipment and 

supplies, aircraft fuel loads, humanitarian assistance packages, and other operational 

needs.  Commanders require accurate temperature forecasts in order to plan equipment 

resources necessary to keep troops safe from the environmental elements.   

Any necessary equipment or clothing can drastically change the logistical 

requirements of any mission, which is measured in costs and expediency.  For example, a 

mission anywhere where the temperature falls below freezing requires extra clothing, 

heating equipment, heated facilities, additional aircraft maintenance equipment, deicing 

equipment, etc.  A large mission with these requirements can add millions of dollars to 

the cost of the deployment.  The Gulf War, for example, cost 61 billion dollars (Horan, 

1997).  Troops were required to take both hot and cold weather clothing items for the 

variety of weather conditions experienced in the region (USAF, 1991).  If it were possible 

to give commanders better long-range temperature forecasts, they might have been able 
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to alleviate taking all or part of the cold-weather clothing, saving millions of dollars and 

vitally needed airlift requirements in the process. Accurate forecasts can also help smaller 

scale military teams as well.  For example, special operation forces deployed in a country 

such as Afghanistan cannot afford to carry unnecessary equipment.  Both cold mountain 

areas and hot desert areas dominate the Afghanistan terrain.  Accurate long-range 

forecasts are vital to their mission success as well as the success of the massive airlift 

operations required to support the war effort.   

Long-range temperature forecasting is not only important in mission planning, but 

also for planning fuel costs for energy consumption.  The DoD, just like the general 

population, needs to forecast how much fuel is necessary to keep energy production and 

purchases at the proper levels to accommodate all the energy needs on their installations 

and in their worldwide theaters of operation.  This can become very difficult, especially if 

there are significant temperature anomalies, such as periods of extreme hot or cold 

conditions.  When there are significant temperature anomalies, there is usually not 

enough fuel to maintain the amount of energy being consumed.  The better the long-range 

temperature forecasts are, the better the initial estimates of needed fuel reserves for 

energy use.  In addition, it is hoped the improvement of long-range temperature forecasts 

may lead to improved long-range forecasts of other climatic elements. 

Long-range weather forecasting 

Lorenz saw his initial weather patterns grow farther and farther apart in model 

simulations until all resemblance to each other had disappeared.  He decided that long-

range weather forecasting must be doomed (Gleick, 1987).  Today, it is thought that 

numerical models are not valid after the 15-day point (Anthes, 1986).  Clearly the 
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immediate future of long-range weather forecasting does not lie with the use of short-

range numerical weather prediction models.   

Baur (1951) suggested long-range weather forecasting could be possible using 

large-scale spatial circulation patterns, which he termed Grosswetterlagen.  Since then, 

countless studies compared large-scale weather patterns with weather parameters around 

the world.  Most, however, do not try to use the patterns as forecast tools.  This research 

attempts to look at forecasting long-range temperatures by using techniques similar to the 

Grosswetterlagen method, using global teleconnection patterns (Wallace and Gutzler, 

1981).  This research attempts to take the concept Baur had and use today’s technology to 

make forecasts once thought impossible.  

Currently, the best long-range temperature forecasts the weather community has for 

worldwide locations are the climatological standard normals, which are averages of 

climatological data calculated for the following consecutive 30-year periods, established 

by international agreement: 1 January 1901 to 31 December 1930; 1 January 1931 to 31 

December 1960; 1 January 1961 to 31 December 1990; etc. (Glickman, 2001).  The U.S 

Climate Prediction Center (CPC) calculates standard normals for U.S. stations at the end 

of each decade (CPC, 2001).  However, temperature anomalies, which are the most 

important features in long-range mission and energy planning, are smoothed out or 

unseen over such 30-year averages.   

This research focuses on finding a process to predict more accurate temperatures 

than those obtained by using climatological standard normals or simple frequency 

distributions of occurrences.  This study investigates the relationships between 

temperature and known global teleconnection patterns.  Finding a significant relationship 
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that affects DoD missions and energy consumption might possibly save DoD billions of 

dollars per year. 

Scope of Research 

Any forecasting tool needs to be reproducible and readily available for users in 

the field, without a great deal of trouble gaining necessary data.  For this reason, the 

National Center for Environmental Prediction’s (NCEP) CPC’s Standardized Northern 

Hemisphere Teleconnection Indices and the Southern Oscillation Index are used in this 

research.  CPC’s indices are produced monthly and are available to users on their web 

site: http://www.cpc.ncep.noaa.gov.  This research investigates statistical methods of 

using these monthly indices to predict U.S. seasonal temperatures from one to three 

months in advance. 

One way to represent temperature forecasts over a period of time is taken from the 

civil engineering community. Their primary need is a means to relate temperatures to the 

demand for fuel consumption over a specific period of time, and they utilize Heating 

Degree-Days (HDDs) or Cooling Degree-Days (CDDs) in this effort.   

This research uses various statistical software packages to explore any relationships 

between teleconnection indices and HDDs/CDDs for 14 locations that have current 

temperature data available. To ensure the utmost quality of the temperature data used, 

only U.S. first-order stations are used in this analysis.  All of the cities have different 

periods of record for their temperature data, and the teleconnection data is only from 

1950 to present. 
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Research Objectives 

The goal of this research is to use known significant teleconnection indices to 

create a predictive tool for forecasting long-range temperature patterns over the U.S.  The 

specific objectives necessary to achieve this goal are: 

1. to gather temperature data from 14 locations across the U.S. in order to 

represent most climatic regimes across the country;  

2. to calculate and compile monthly HDDs and CDDs values from this data; 

3. to gather teleconnection indices from the 14 most significantly known 

Northern Hemisphere teleconnections and the Southern Oscillation Index in 

the Southern Hemisphere; 

4. to remove ten years of the data for later verification of any relationship 

identified; 

5. to analyze data with a thorough regression analysis to find any significant 

relationships between monthly teleconnection indices and the summation of 

HDDs/CDDs for the following three months; 

6. to use, if necessary, data mining techniques to find any predictive 

relationships if standard statistical methods fail; 

7. to create predictive tools using monthly teleconnection indices as the 

predictor and summed HDDs and CDDs seasons as the predictand for any 

relationships found; 

8. to verify any predictive models developed by using ten years of 

independent data not included in creating the predictive models and,  

9. to investigate the spatial homogeneity of the created prediction trees.
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II.  Literature Review 
 

 
Rotated Principle Component Analysis (RPCA)  

 The method used for defining the low-frequency teleconnection patterns in this 

study is that of Rotated Principal Component Analysis (RPCA).  RPCA is considered to 

be superior to using distinct centers of geopotential height anomalies at select locations, 

in that the teleconnection patterns identified are based on the entire flow field, and not 

just from height anomalies at the selected locations (Rodionov and Assel, 2000).   

RPCA uses the eigenvectors of the cross-correlation (or cross-covariance) matrix 

from the time variations of the grid-point values of the 700-mb height anomalies, and 

ranks the eigenvectors according to the amount of total variance they explain (creating a 

PCA).  The PCA is then orthogonally rotated to get the variances as close to zero as 

possible (Barnston and Livezey, 1987).  Barnston and Livezey (1987) used the RPCA 

technique to calculate the 10 most prominent teleconnection patterns in each month.  This 

procedure isolates the primary teleconnection patterns for all months and allows for a 

time series of the amplitudes of the patterns to be constructed.   

CPC uses the Barnston and Livezey method by applying the RPCA technique to 

monthly mean 700-mb height anomalies between January 1964 and July 1994.  In CPC’s 

analysis, ten patterns are determined for each calendar month by using all of the height 

anomaly fields for the three-month period centered on that month. For example, the July 

patterns are calculated based on the June through August anomaly fields (CPC, 2001).  

Using RPCA instead of PCA creates solutions that have a physical meteorological 

interpretability.  The RPCA solutions also involve much smaller areas of the hemisphere 
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(Barnston and Livezey, 1987).  A more comprehensive discussion of rotated principal 

component solutions is found in Horel (1981) and Barnston and Livezey (1987).  

Northern Hemispheric Teleconnection patterns  
 

Teleconnection patterns are macro-β scale patterns resembling standing waves 

with geographically fixed centers (Horel, 1981). They are also referred to as preferred 

modes of low-frequency variability (CPC, 2001), and several teleconnection patterns in 

planetary circulation have been documented by Barnston and Livezey (1987).  A 

comprehensive re-analysis of Northern Hemispheric variability patterns has been 

undertaken by CPC using newly available 700hPa height data (Washington et al., 2000) 

to achieve a better understanding in the synoptic weather patterns related to the 

teleconnection patterns.    

The 13 prominent Northern Hemispheric teleconnection patterns used in this 

study are separated into three regions; patterns over the North Atlantic, patterns over 

Eurasia, and patterns over North Pacific/ North America.  The prominent patterns over 

the North Atlantic are:  the North Atlantic Oscillation (NAO), the East Atlantic Pattern 

(EA), and the East Atlantic Jet Pattern (EA-JET).  The prominent patterns over Eurasia 

are: the East Atlantic/West Russia Pattern (EA/WR), the Scandinavian Pattern (SCAD), 

the Polar/Eurasia Pattern (POL) and the Asian Summer Pattern (ASU).  The prominent 

patterns over the North Pacific/North America are: West Pacific Pattern (WP), the East 

Pacific Pattern (EP), the North Pacific Pattern (NP), the Pacific/North American Pattern 

(PNA), the Tropical/Northern Hemisphere Pattern (TNH), and the Pacific Transition 

Pattern (PT). 
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 The North Atlantic Oscillation (NAO), shown in Figure 1, is one of the dominant 

modes of Northern Hemispheric climate variability (Walker and Bliss, 1932; Van Loon 

and Rogers, 1978; Wallace and Gutzler, 1981; Washington et al., 2000) and is a leading 

mode in all months (Barnston and Livezey, 1987; Washington et al., 2000).  The NAO 

exhibits little variation in its climatological mean structure from month-to-month, and 

consists of a north-south dipole of anomalies, with one center over the Greenland/Iceland 

region and the other center, of opposite sign, spanning the central latitudes of the North 

Atlantic around the Azores between 35ºN and 40ºN.  The positive phase of the NAO 

reflects below-normal heights and pressure across the high latitudes of the North Atlantic 

and above-normal heights and pressure over the central North Atlantic, the eastern United 

States and Western Europe.  The negative phase reflects an opposite dipole pattern of 

height and pressure anomalies over these regions (Washington et al., 2000; CPC, 2001). 

Strong positive phases of the NAO tend to be associated with above-normal temperatures 

in the eastern United States and across northern Europe and with below-normal 

temperatures in Greenland and oftentimes across southern Europe and the Middle East 

(CPC, 2001).   

The EA pattern, shown in Figure 2, is a prominent mode of low-frequency 

variability over the North Atlantic.  It is a prominent mode in all months except May-

August.  It consists of a north-south dipole of anomaly centers, which span the entire 

North Atlantic Ocean from east to west with the zero line always positioned over England 

or France.  The EA pattern is structurally similar to the NAO pattern; however, the 

anomaly centers are displaced southeastward to the approximate nodal lines of the NAO 

 

8



pattern.  The lower-latitude center contains a strong subtropical link, reflecting large-

scale modulation in the strength and location of the subtropical ridge (CPC, 2001). 

 

 

 

Figure 1.  Phases of the NAO pattern. From positive phase in January to negative phase 
in July. Values are scaled to be correlations between the average 700-mb height 

anomalies at a given grid point and the principal component amplitude (modified from 
CPC, 2001). 
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Figure 2.  Phases of the EA pattern (modified from CPC, 2001). 

 

The EA-JET pattern, shown in Figure 3, is a prominent mode of North Atlantic 

variability, appearing between April and August.  This pattern also consists of a north-

south dipole of anomaly centers, with one main center located over the high latitudes of 

the eastern North Atlantic and Scandinavia, and the other center located over Northern 

Africa and the Mediterranean Sea.  A positive phase of the EA-Jet pattern reflects an 

intensification of the westerlies over the central latitudes of the eastern North Atlantic 
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and over much of Europe, while a negative phase reflects a strong split-flow 

configuration over these regions, sometimes, in association with long-lived blocking 

anticyclones in the vicinity of Greenland and Great Britain (CPC, 2001).  

 

 

Figure 3.  Phases of the EA-JET pattern  (modified from CPC, 2001). 

 

The EA/WR pattern, shown in Figure 4, is one of two prominent modes that 

affect Eurasia during most of the year.  This pattern is prominent in all months except 

June-August.  In winter, two main anomaly centers, located over the Caspian Sea and 
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Western Europe, comprise the East Atlantic/West Russian pattern.  A three-celled 

pattern is then evident in the spring and fall seasons, with two main anomaly centers 

of opposite sign located over western/northwestern Russia and over northwestern 

Europe.  The third center, having the same sign as the Russia center, is located off the 

Portuguese coast in spring, but exhibits a northern movement toward Newfoundland 

in the fall (CPC, 2001). 

 

 

Figure 4.  Phases of the EA/WR pattern (modified from CPC, 2001).  
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The SCAND pattern, shown in Figure 5, consists of a primary circulation 

center, which spans Scandinavia and large portions of the Arctic Ocean north of 

Siberia.  Two additional weaker centers with opposite sign to the Scandinavia center 

are located over Western Europe and over the Mongolia and the western China sector.  

The positive phase of this pattern is associated with positive height anomalies, 

sometimes reflecting major blocking anticyclones over Scandinavia and western 

Russia, while the negative phase of the pattern is associated with negative height 

anomalies over these same regions (CPC, 2001). 

 

 

Figure 5.  Phases of SCAND pattern (modified from CPC, 2001). 
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The POL pattern, shown in Figure 6, appears only in the winter, and is the most 

prominent mode of low-frequency variability during December and February.  The 

pattern consists of one main anomaly center over the polar region, and separate centers of 

opposite sign to the polar anomaly over Europe and northeastern China.  Thus, the pattern 

reflects major changes in the strength of the circumpolar circulation, and reveals the 

accompanying systematic changes that occur in the midlatitude circulation over large 

portions of Europe and Asia (CPC, 2001). 

 

 

Figure 6.  The POL pattern  (modified from CPC, 2001). 

 

The ASU pattern, shown in Figure 7, is a broad, east-west center in central Asia 

(Barnston and Livezey, 1987).  The Asian Summer pattern is only a leading mode during 

the summer months of June-August.  The pattern is monopole in nature with anomalies of 

the same sign observed throughout southern Asia and northeastern Africa.  A positive 
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phase of the pattern is indicated by above-normal heights throughout southern Asia and 

northeastern Africa (CPC, 2001).  The above normal heights are thought to be due to the 

intense heating over the Tibetan Plateau.  It is theorized that in years with higher amounts 

of insolation over the plateau, the entire ITCZ over Africa and Asia is pulled further north 

thus affecting the circulation over the entire Asian continent (Lowther, 1998). 

 

 

Figure 7.  Positive phase of ASU pattern (modified from CPC, 2001). 

 

The WP pattern, shown in Figure 8, is a primary mode of low-frequency 

variability over the North Pacific throughout all months (Washington et al., 2000; 

Barnston and Livezey, 1987; Wallace and Gutzler, 1981).  During winter and spring, the 

pattern consists of a north-south dipole of anomalies, with one center located over the 

Kamchatka Peninsula and another broad center of opposite sign covering portions of 

southeastern Asia and the lower latitudes of the extreme western North Pacific.  Strong 

positive or negative phases of this pattern reflect pronounced zonal and meridional 
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variations in the location and intensity of the entrance region of the Pacific (or East 

Asian) jet stream (CPC, 2001).  

 

 

Figure 8.  Phases of the WP pattern (modified from CPC, 2001). 

 

The EP pattern, shown in Figure 9, is evident in all months except August and 

September and reflects a north-south dipole of height anomalies over the eastern North 

Pacific.  The northern center is located in the vicinity of Alaska and the west coast of 

Canada, while the southern center is of an opposite sign and is found near, or east of, 
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Hawaii.  During strong positive phases of the EP pattern, a deeper than normal trough is 

located in the vicinity of the Gulf of Alaska or western North America, and positive 

height anomalies are observed further south.  A strong negative phase of the EP pattern is 

associated with a pronounced split-flow configuration over the eastern North Pacific, 

with reduced westerlies over the region (CPC, 2001). 

 

Figure 9.  Phase of the EP pattern (modified from CPC, 2001). 
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The NP pattern, shown in Figure 10, is prominent from March through July.  This 

pattern consists of a primary anomaly center, which spans the central latitudes of the 

western and central North Pacific, and a weaker anomaly region of opposite sign, which 

spans eastern Siberia, Alaska, and the western mountain regions of North America.  

Overall, pronounced positive phases of the NP pattern are associated with a southward 

shift and intensification of the Pacific jet stream from eastern Asia to the eastern North 

Pacific, followed downstream by an enhanced anticyclonic circulation over western 

North America, and by an enhanced cyclonic circulation over the southeastern United 

States.  Pronounced negative phases of the NP pattern are associated with circulation 

anomalies of opposite sign in these same regions (CPC, 2001).  

 

Figure 10.  Phases of NP pattern (modified from CPC, 2001). 
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The PNA pattern, shown in Figure 11, is perhaps the best-known mode of Pacific-

based variability.  It appears in all months except June and July.  The PNA pattern 

reflects a quadripole pattern of geopotential anomalies, with anomalies of similar sign 

located south of the Aleutian Islands and over the southeastern USA.  Anomalies with 

signs opposite to the Aleutian center are located near Hawaii and over central Canada 

during the winter and autumn (CPC, 2001; Washington et al., 2000; Barnston and 

Livezey, 1987). 

 

 

Figure 11.  Phases of PNA pattern (modified from CPC, 2001).  
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The TNH pattern, shown in figure 12, appears as a prominent mode from 

November-February.  The pattern consists of one primary anomaly center over the Gulf 

of Alaska and a separate anomaly center of opposite sign over Hudson Bay.  A weaker 

area of anomalies having the same sign to the Gulf of Alaska anomaly extends across 

Mexico and the extreme southeastern United States.  This pattern reflects large-scale 

changes in both the location and eastward extent of the Pacific jet stream, and also in the 

mean strength and position of the climatological Hudson Bay low.  This pattern 

significantly modulates the flow of marine air into North America, as well as the 

southward transport of cold Canadian air into the north-central U. S. (CPC, 2001). 

 

 

Figure 12.  Phases of TNH pattern (modified by CPC, 2001). 

 

The PT pattern, shown in Figure 13, is prominent between May-August.  The 

mode consists of a pattern of height anomalies, which extends from the Gulf of Alaska 
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eastward to the Labrador Sea and is aligned along the 40ºN latitude circle.  The 

prominent centers of action have a similar sign and are located over the intermountain 

region of the United States and over the Labrador Sea.  Relatively weak anomaly centers 

with signs opposite to the above are located over the Gulf of Alaska and over the eastern 

United States (CPC, 2001). 

 

 

Figure 13.  Phases of PT pattern  (modified by CPC, 2001). 

 

Southern Hemispheric Teleconnection Pattern  
 

“When the pressure is high in the Pacific Ocean, it tends to be low in the Indian 

Ocean from Africa to Australia.”  This is how Sir Gilbert Walker described the Southern 

Oscillation (SO) in his papers in the 1920s and 1930s (Burroughs, 1992).  There are 

numerous ways of recording this slow see-saw of atmospheric pressure across the 

equatorial pacific resulting in various Southern Oscillation Indexes (SOI).  This research 

uses the SOI index created by the pressure difference between Tahiti, French Polynesia in 
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the mid-Pacific and Darwin in northern Australia.  These two stations represent the 

Southeast Pacific area of high pressure and the Indonesian low, respectively (Robinson 

and Henderson-Sellers, 1999). 

Other research  

 There are numerous articles that draw comparisons between a specific 

teleconnection pattern and specific meteorological parameters, but there are fewer articles 

that use all of the teleconnections together for a comparison toward single parameters.  

Of those that use multiple teleconnections (Washington et al., (2000), Rodionov and 

Assel, (2000), for example), none attempted to create predictive relationships between the 

teleconnections and the parameters, thus resulting in a model to use as a tool in the 

operational field.     
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III.  Data Collection and Review 
 

 
Northern Hemisphere Teleconnection Pattern Indices 
 

As mentioned in Chapter II, the 10 most prominent teleconnection patterns in 

each month were calculated by RPCA (CPC, 2001).  For each of the 10 patterns in a 

month, CPC calculates a monthly index.  This method of calculation is a form of factor 

analysis that has not yet been published by CPC.  

Southern Oscillation Index 

 The Southern Oscillation Index (SOI) is the only index used in this study that is 

not calculated by the RPCA method.  It is calculated by using the raw atmospheric 

pressure data from Tahiti and Darwin, Australia.  The anomalies used are departures from 

the 1951-1980 base period, and the anomaly for each city is defined as: 

                                          (1) ( )( ) (( )SLPmeanSLPActualXA −= )

where the XA is either TA for the Tahiti anomaly or DA for the Darwin anomaly, 

depending on which cities anomaly is being calculated, and SLP is for the appropriate 

location sea level pressure.  The standard deviation for Tahiti or Darwin is: 

                                          Standard Deviation  = 
N
XA∑ 2

 (2) 

where N is the number of months being summed.  The data are then standardized as 

follows: 

                                                   (ST/SD) = 

N
XA

XA

∑ 2
 (3) 

where ST is standardized Tahiti and SD is standardized Darwin monthly data. 
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The standardized SOI, is then: 

                                                   SOI = 
( )

N
SDST

SDST

∑ −

−
2

   (4) 

where the denominator is the monthly standard deviation. 

Heating Degree Days / Cooling Degree Days 

To calculate the HDDs for a particular day, one would first find the day’s average 

temperature.  The day’s average temperature for the data used in this study is found by: 

( )
2

__ tempMintempMax + , where the Max_temp is the day’s maximum temperature and 

Min_temp is the day’s minimum temperature.  If the average temperature is less than 

65°F, subtract the average temperature from 65°F and the result is the number of HDDs 

for that particular day.  The resulting number is accumulated over a month, season, or 

whatever period is being examined.  To calculate CDDs for a particular day, one would 

again find the day’s average temperature.  If the temperature is greater than 65°F, subtract 

65°F from the average temperature and the result is the number of CDDs for that day.  

The number is again accumulated over the period in question. 

Locations 

The HDDs and CDDs were calculated for 14 locations across the U.S., shown in 

Figure 14.  The locations have a good history of temperature data and make an excellent 

database for this study.  The locations are: Atlanta-Hartsfield International Airport, 

Georgia; Chicago O’Hare International Airport, Illinois; Cincinnati-Northern Kentucky 

Airport, Kentucky; Dallas-Fort Worth International Airport, Texas; Des Moines 

International Airport, Iowa; Las Vegas McCarran International Airport, Nevada; 
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Memphis International Airport, Tennessee; Minneapolis-St. Paul International Airport, 

Minnesota; New York Laguardia Airport, New York; Philadelphia International Airport, 

Pennsylvania; Portland International Airport, Oregon; Sacramento Executive Airport, 

California; Tucson International Airport, Arizona; and Wright-Patterson AFB, Ohio. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 14.  Fourteen U.S. locations from which HDDs and CDDs are calculated 
(modified from Mapquest.com, 2001). 
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IV.  Linear Regression Analysis 
 
 
Data Manipulation for Linear Regression Analysis 

 
 This study began with simple regression analysis between the HDDs and CDDs 

for the 14 locations and all 13 teleconnection indices.  The goal was to compare the 13 

teleconnection indices with the HDDs and CDDs of the 14 locations for one, two and 

three months in the future.  All HDDs, CDDs, and teleconnections were put into data 

vector columns, temporally from January 1950 to December 1999, for 13 of the 14 

locations.  Chicago’s data started in 1959, therefore Chicago data manipulations were 

accomplished from this date forward.  The vector format used was necessary for the 

statistical program to properly accomplish regression analysis, but created missing data 

problems.  The monthly teleconnection indices are created only in months the 

teleconnections are an RPCA leading mode (in the top ten).  Except for the NAO and SOI 

standardized (SOI_S), none of the teleconnections are in a leading mode every month of 

the year, thus the statistical will not use the data if there is missing data in any row of the 

combined columns.  

To correct these problems 12 different matrices were created, one for each month 

of the year, and only those teleconnection indices that were RPCA leading modes in the 

specific month were added to the matrix.  Needing to compare all twelve months of 

teleconnections with each location’s HDDs and CDDs for one, two, and three months in 

the future significantly, increased the needed analysis time.  Therefore due to time 

constraints, the data were combined to create seasonal values. 
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The months were combined to create seasons and then the seasons were separated into 

categories, shown in Table 1. 

 
Table 1.  Monthly periods used in summations of HDDs and CDDs to create seasons. 

Winter (HDD’s)  Summer  (CDD’s)  

October-December OND April-June AMJ 

November-January NDJ May-July MJJ 

December-

February 

DJF June-August JJA 

January-March JFM July-September JAS 

February-April FMA August-October ASO 

March-May MAM September-November SON 

 

 

HDDs were summed into three-month seasons from October-May and CDDs were 

summed into three-month seasons from April-November.  This process decreased the 

number of needed comparisons.  The goal, at this point, was to compare the 

teleconnection indices in RPCA leading modes in a particular month with the summation 

of the next three month’s HDDs or CDDs, depending on the month being compared for 

each location.  Before these comparisons were completed, 10 years of data were 

randomly selected and removed to create an independent verification database.  

Linear Regression Analysis 

Linear regression was accomplished on the data using leading mode 

teleconnections from May and the summed CDDs from June-August.  The first output 
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statistic taken into consideration was the value in the significance column in the analysis 

of variance (ANOVA) table, shown in Table 2.  This is commonly known as the p-value 

in statistical references and can be compared to the significance level of 0.01.  If the p-

value is less than 0.01 then at least one of the predictors (teleconnection indices) creates a 

statistically good model for the dependent variable (HDDs or CDDs) at the 0.01 

significance level.   

 
Table 2.  ANOVA table output from linear regression.  A p-value in the Sig column of 

less than 0.01 indicates a good model. 
 

ANOVA 
Model  Sum of 

Squares 
df Mean 

Square
F Sig.

Regression 679422.475 10 67942.247 3.825 .002
Residual 515055.500 29 17760.534

Total 1194477.97
5 

39

a  Predictors: (Constant), SOI_S, PNA, EAWR, PT, NAO, SCA, EA_JET, NP, EP, WP 
b  Dependent Variable: NUM_AT 
 

 

The value in the significant column of the coefficients table, shown in Table 3, is used to 

evaluate which predictors were statistically sound.  Those with p-value greater than 0.05 

were eliminated from the model and linear regression was rerun.  This procedure was 

repeated until the best model was gained.  Ideally, an ANOVA p-value of less than or 

equal to 0.01 with p-values of the predictors in the coefficients table of less than or equal 

to 0.01 result in the best model; however, it was not always possible to reach this goal.  

While running the linear regression, the Adjusted R-squared parameter in the model 

summary table, shown in Table 4, was considered. 
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Table 3.  Coefficients table output from linear regression.  A p-value of 0.01 in the Sig 
column is desired for a significant model.  The predictors with the greatest p-value were 

eliminated and the analysis was run again. 
 

Coefficients 
 Unstandardized 

Coefficients 
Standardized 

Coefficients
t Sig. 

Model B Std. 
Error

Beta  

1 (Constant) 1187.300 23.599 50.311 .000 
 NAO -12.627 23.333 -.069 -.541 .593 
 EA_JET -.907 25.697 -.005 -.035 .972 
 WP 91.944 25.580 .531 3.594 .001 
 EP 36.439 28.100 .174 1.297 .205 
 NP 56.544 22.089 .367 2.560 .016 
 PNA -25.205 23.185 -.138 -1.087 .286 
 EAWR -67.043 25.475 -.335 -2.632 .013 
 SCA -22.762 20.866 -.139 -1.091 .284 
 PT -17.405 25.303 -.098 -.688 .497 
 SOI_S 43.276 30.210 .221 1.432 .163 

a  Dependent Variable: NUM_AT 
 

 

Table 4.  Model summary table output from linear regression.  An Adjusted R-squared 
greater than 0.60 is desired. 

Model Summary

.754a .569 .420 133.2687
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), SOI_S, PNA, EAWR, PT, NAO,
SCA, EA_JET, NP, EP, WP

a. 

 
 
 

The R-squared value can be interpreted as the proportion of the variation of the 

predictand that is “described” or “accounted for” by the regression (Wilks, 1995).  The R-

squared is adjusted when there are multiple predictands, creating the adjusted R-squared 

coefficient.  An adjusted R-squared of 0.60 (describing 60% of the predictand variance) 

or greater is the goal if any predictive model were to be discovered.  As one can see from 
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Table 5, the greatest adjusted R-squared, for just one year, was 43%.  The rest of the 

results using May teleconnections versus June-August CDDs are listed in Table 5.  The 

results are not conducive to a predictive model, so data mining techniques were used for 

further exploration. 

 
Table 5.  P-value and adjusted R-squared from the ANOVA table for the 14 locations.  

Linear regression used May teleconnections and June-August CDD’s. 
 

City ATL CHI CIN DFW DM LV MEM 

p-val <0.0001 0.085 0.005 0.001 0.110 0.002 0.002 

Adj R2 0.426 0.119 0.131 0.240 0.329 0.097 0.310 

        

City MIN NYL PHI POR SAC TUC WPAFB

p-val 0.005 0.139 0.001 0.002 0.002 0.016 0.062 

Adj R2 0.289 0.285 0.053 0.314 0.290 0.205 0.114 
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V.  Tree-Based Statistical Models 

 
Overview 

 Tree-based statistical models are a recent development in statistics that have been 

applied to prediction problems in widely diverse fields of endeavor, but are, as of yet, not 

well known in the atmospheric sciences (Burrows and Assel, 1992).  This study uses 

classification and regression trees (CART) analysis to explore the data.  CART is a tree-

based statistical procedure for application to classification and regression problems.  

Breiman et al. (1984) found that error rates of CART solutions are nearly always as low 

or lower than solutions by linear regression.  Error rates are also significantly lower for 

problems involving complex predictands and many predictors (Burrows and Assel, 

1992). 

 From a database of predictand cases and accompanying predictors, CART 

establishes decision trees that are a classification of categorical predictands or a 

regression of continuous predictands.  A decision tree consists of a tree-like structure of 

binary decisions rules.  At each decision point (node) a case will branch either to the left 

or right based on a test against a specific predictor value, and will continue branching 

until a final point (terminal node) is reached.  CART uses input parameters of tree length, 

parent node size, and child node size to determine the number of nodes.  It uses the inputs 

to search for the tree that provides the least error when used with independent data.  In 

this study, the independent data are represented by the ten years of data that was withheld 

from the original dataset.  After a tree is calculated, a process of eliminating terminal 

nodes (pruning) is accomplished to make the tree a more effective model.  Categorical 
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predictors are used in classification tree analysis and continuous predictors are used in 

regression tree analysis (Burrows and Assel, 1992). 

The goal of this study at this point was to produce a predictive tool, using CART 

analysis, for seasonal HDDs or CDDs that would be more accurate than using the 

climatological normals or simple frequency distributions of occurrences. 

Classification Tree Analysis 

 Classification trees were the first tree-based models attempted.  To use this model 

the data had to be categorized into a nominal data format.  Data were categorized into 

thirds, using categories of above normal, normal, and below normal.  Each HDD and 

CDD vector was sorted into ascending order, then the separation values between the 

upper third, the middle, third and the lower third were calculated.  All data between the 

calculated figures in each vector were considered in the specific group of above normal, 

normal, or below normal categories. 

 An example of such a tree is shown in Figure 16.  A brief explanation of this 

classification tree provides the reader a general idea of the tree’s structure.  This tree was 

computed using data from Minneapolis, Minnesota, using May teleconnections and 

categorized June-August CDDs.  Specific “parent” and “child” node inputs are user 

provided.  In this tree the parent node of any split must have at least n=6, n being the 

number of data points (years) in the node, and the child node must be at least n=2.  If 

these conditions are not met, the node will stop splitting.  For example, node 5 has n=6, 

but the program calculated that if this node was split, one of the resulting splits would not 

be at least n=2.  The split was therefore stopped.  However, in node 4, with n>6, a split 

was accomplished because the child nodes were both at least n=2.   
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To reach a specific node, a series of conditions must be true.  For example: to get to node 

10 the EP must be less than or equal to 0.45, the EAWR must be greater than or equal to -

0.2, and EA_JET must be greater than -0.35. 

 

 

Figure 15.  Example of a classification tree.  This example is a tree run with data from 
Minneapolis using May teleconnections and June-August CDDs.  Three categories are 

present; 2 is above normal, 1 is normal, and 0 is below normal. 
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Extracting any predictive information proved difficult in the classification trees.  For 

example: node 9 shows nine remaining data points from the original 13 in the below 

normal category (69%), with nine of the 10 data points in that node (90%).  This gives a 

total probability of ending in node 9 of 62% below normal, which is not a bad result.  

However, the best probabilities calculated from the trees were in the mid 60% range and 

only in a few nodes.  In addition, specific conditions needed to exist to arrive in the 

nodes.  In this example, node 9 only incorporates 25% of the total data.  This result 

created difficulty in creating a tool that would efficiently incorporate the whole dataset.  

It didn’t appear there was any likelihood of creating any useful predictive tools from 

classification trees, so a different form of CART analysis was accomplished.  

Regression Tree Analysis 

The regression tree differs from the classification tree in that it uses continuous 

data instead of classified nominal data.  Figure 17 is an example of such a regression tree.  

A brief explanation of this example tree will give the reader a general idea of the tree’s 

structure.  This tree was computed with the same data from Minneapolis, Minnesota, 

using May teleconnections and June-August CDDs.  The user inputs three initial 

constraints before a tree can be grown.  The inputs are maximum number of levels, 

minimum number of data points necessary in the parent node before a split can be 

performed, and the minimum number of data points in the child node before a split can be 

performed.  In the example shown in Figure 17, the input values are 10 maximum levels 

of the tree, 6 minimum data points in the parent node, and a minimum of 2 data points in 

a child node.  The regression tree starts with a beginning node, node 0.  In this example, 

node 0 represents the summed CDDs from June-August for Minneapolis.  It displays the 
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mean standard deviation, number of data points, and the percent of data that is in that 

particular node.  Each parent node is split into two child nodes until the splitting is 

stopped by user specified inputs.   

 

 

Figure 16.  Example of a regression tree.  Shown is a tree run with data from Minneapolis 
using May teleconnections and June-August CDDs. 
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The fundamental idea to make a split is to select each split of a node so that the data in 

each of the child nodes are “purer” than the data in the parent node (Breiman et al., 

1984).  For continuous target variables, the least-squared deviation (LSD) impurity 

measure is used.  The LSD measure (R(t)) is the within-node variance for node t, and is 

equal to the resubstitution estimate of risk for the node.  It is defined as: 

                                         2))((
)(

1)( tyy
tN

tR
ti

i∑
∈

−=  (5) 

where N(t) is the number of cases in the node t,  is the value of the target variable 

(location HDDs or CDDs), and 

iy

iy  is the mean for node t.  The LSD criterion function for 

split s at node t is defined as: 

                                               )()()(),( RRLL tRptRptRts −−=φ  (6) 

where  is the proportion of cases in t sent to the left child node,  is the proportion 

sent to the right child node, and t and  are the nodes created by the split s.   

Lp Rp

L Rt

The software runs all possible splits on the node and splits the node at the location of the 

largest decrease in impurity.  This value is shown on the tree as the “improvement”.  The 

process is then repeated at each node (SPSS, 2001).   

Application of Regression Tree Analysis 

The goal of this study was to come up with a predictive tool for HDDs/CDDs using 

teleconnection indices.  To test the process at 14 locations, May teleconnections and 

June-August CDDs were used.  First, a goodness of fit test for normality was 

accomplished on the CDDs in each city using the Shapiro-Wilk test.  The results are 

shown in Table 6.   
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Table 6.  Shapiro-Wilk goodness of fit test for normality.  A p-value > 0.05 shows a 
normal distribution.  DFW and TUC did not pass the test. 

 City ATL CHI CIN DFW DM LV MEM 

W-S test 0.99 0.29 0.26 0.01 0.42 0.55 0.31 

City MIN NYL PHI POR SAC TUC WPAFB 

W-S test 0.84 0.22 0.69 0.25 0.93 0.004 0.12 

 

 

 

 

 

A p-value > 0.05 in the Shapiro-Wilk test indicates a normal distribution.  Dallas, and 

Tucson did not pass the normality test, however, only one data point for Tucson and two 

for Dallas created a non-normal distribution, so the exploration for a predictive outcome 

continued with normality assumed for all locations.  With the goal of coming up with a 

predictive tool that is better than the climatological normals or simple frequency 

distributions in mind, it was decided to create a 95% prediction interval to create a range 

of CDDs.  The mean and standard deviation from each tree node was used to create a 

95% prediction interval which is defined as: 

                                                   
n

stx n
111,025.0 +⋅± −  (7) 

where x  is the mean from the calculated node, t is the critical value for a t-distribution, n 

is the number of data points in the node, and s is the sample standard deviation. 

 The next step in tree-structured statistics is to prune the tree.  Pruning consists of 

eliminating the terminal nodes necessary to create the best effective tree.  How to prune a 

tree depends on the data being analyzed.  The pruning criteria for the trees in this study 
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were calculated during the verification of the process created.  The independent data (ten 

years) withheld from the original data were run through the trees.  The teleconnections 

for each year were run through the tree to calculate which node was the terminating node, 

then the specific year’s CDDs were checked to see if they fell within the created 

prediction interval from the same node.  During the verification process the data were run 

through multiple models with different criteria for pruning the terminal nodes.  It was 

found that a node with n<6 needed to be pruned.  As shown in Figure 18, those nodes of 

the tree with n<6 are terminated.   

Results of model verification are shown in Table 7.  Verification results for the 

individual locations were between 80% and 100% with an overall 88% verification rate. 

 

Table 7.  Percentage of CDDs that were in the predicted range after verification data 
were run through the trees.  An overall verification rate of 88% was achieved. 

 City ATL CHI CIN DFW DM LV MEM 

% CDDs in final node 80 87.5 80 100 90 80 80 

City MIN NYL PHI POR SAC TUC WPAFB 

% CDDs in final node 90 80 90 100 100 90 90 

 

 

 

 

Results vs. Frequency Distribution 
 The goal of this study was to create a predictive tool that was better than the 

climatological standard normals or simple frequency distributions of CDDs/HDDs 

occurrences.  Table 8 shows comparisons of the simple frequency distributions of 

occurrences of Minneapolis June-August CDDs and the created 95% prediction interval 

for valid nodes of the tree shown in Figure 18.  The new calculated forecast ranges are  
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Figure 17.  Example of a pruned regression tree.  This example tree was run with data 
from Minneapolis using May teleconnections and June-August CDDs.  The pruned 

branches are crossed out if n<6 in any node. 
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shaded in gray.  The reduction of the original CDD range is quantified by calculating a 

ratio of the new forecast range, for the individual nodes, to the original CDD range and 

subtracting this value from one.  This reduction percentage is multiplied by the 

climatological frequency distribution for each individual node to obtain an expected 

forecast range reduction percentage.  The individual node expected forecast range 

reduction percentages are summed to obtain a total expected range reductions.  This 

reduction percentage can be viewed as the total expected forecast range reduction over 

climatology. 

As an example from Table 8:  the total range of summed CDDs are broken into 14 

ranges between 248 and 909, with the frequency distributions of occurrences for the CDD 

ranges in the next column.  The calculated percentage the range is reduced in node 11 is 

the ratio of the new forecast range (626-390 = 236 CDDs) with the total range (661 

CDDs).  Therefore, in node 11 the range is reduced (1-(236/661)) or 64%.  

Climatologically, over the 40-year period of record, the calculated CDDs are in node 11 

12.5% of the time.  The product of the reduced range (64%) and the observed 

climatological frequency of occurrences per node (12.5%) shows an expected forecast 

range reduction for node 11 of 8% over climatology.  Summing all of the individual node 

expected forecast range reduction percentages shows a total expected forecast range 

reduction of 36.45% over climatology for Minneapolis.  The expected forecast range 

reduction for all 14 locations are shown in Table 9, with an overall expected forecast 

range reduction of 35.7% over climatology.  This value varies from 16.8% for Cincinnati 

to 58.9% for Tucson. 
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Table 8.  Expected forecast range reduction.  Prediction intervals computed in each node 

are shown in gray.  The percentage the range is reduced is multiplied by the 
climatological frequency distribution to obtain an expected forecast range reduction.  The 

individual node expected forecast range reduction percentages are summed to obtain a 
total expected forecast range reduction over climatology, 36.45% in this case. 

 
    Node          

  MIN CDD 
Frequency 
Distribution 0 1 2 4 5 8 9 11 14 

                         
  >248<=295 0.0250 0 0 0 0 0 0 0 0 0  
  >295<=342 0.0000 1 1 0 1 0 0 0 0 0  
  >342<=390 0.0500 1 1 0 1 0 0 0 0 0  
  >390<=437 0.0250 1 1 1 1 1 1 1 1 0  
  >437<=484 0.1500 1 1 1 1 1 1 1 1 1  
  >484<=531 0.0750 1 1 1 1 1 1 1 1 1  
  >531<=579 0.2000 1 1 1 1 1 1 1 1 1  
  >579<=626 0.0750 1 1 1 1 1 1 1 1 1  
  >626<=673 0.1000 1 1 1 1 1 1 1 0 1  
  >673<=720 0.1000 1 1 1 1 1 1 0 0 0  
  >720<=767 0.0750 1 1 1 1 1 1 0 0 0  
  >767<=815 0.0250 1 1 1 0 1 0 0 0 0  
  >815<=862 0.0500 1 1 1 0 1 0 0 0 0  
  >862<=909 0.0250 1 0 1 0 1 0 0 0 0  
  >909 0.0250 0 0 1 0 1 0 0 0 0  
              
Percent reduction in 
forecast range per 7 14 22 29 22 43 57 64 64  
individual node (%)           
              
Climatological 
distribution of 
per node (40 

frequency 
occurrences
years) 0.000 0.075 0.075 0.100 0.375 0.050 0.050 0.125 0.150 

             Total 
Expected forecast range 
reduction. (%) 0.00 1.05 1.65 2.90 8.25 2.15 2.85 8.00 9.6036.45
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Table 9.  The total expected forecast range reduction over climatology for the 14 forecast 
locations.  The overall average expected forecast range reduction for this example is 

35.7% over climatology. 
 

 City ATL CHI CIN DFW DM LV MEM 

Expected forecast  
range reduction (%) 

39.7 33.3 16.8 32.2 48.2 46.4 34.5 

City MIN NYL PHI POR SAC TUC WPAFB 

Expected forecast  
range reduction (%) 

36.5 39.4 36.1 24.9 30.2 58.9 22.7 
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VI.  Conclusions and Recommendations 

 
Conclusions 

 
 This study has introduced a new technique to significantly increase the accuracy 

of seasonal long-range temperature forecasts.  It statistically explored teleconnection 

indices and, using a tree-based statistical regression, created a predictive tool for future 

CDDs and HDDs summed over three months.   

 Temperature data were gathered from 14 U.S. locations in order to represent most 

of the climate regimes across the country (Objective 1).  HDDs and CDDs were 

calculated using the temperature data gathered to use as predictor variables (Objective 2).  

Teleconnection indices from the 13 most significant Northern Hemispheric 

teleconnections and the Southern Oscillation Index in the Southern Hemisphere were 

gathered to use as predictand variables (Objective 3).  Ten years of data were then 

removed for independent verification of the technique created (Objective 4). 

 Linear regression analysis was accomplished on the data using teleconnections 

from May and summed CDDs from June-August.  Valid models were found during the 

analysis, but the amount of variance of the predictand explained by the linear regression 

was rarely greater than 35%, in which case, creating a predictive tool would be difficult 

(Objective 5).   

Tree-based analysis was accomplished on the data (Objective 6), first using 

classification tree analysis; however, extracting any predictive information also proved 

difficult with this type of approach.  Regression tree analysis was then accomplished on 
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the data.  Trees were created and the predicted mean and standard deviations were used to 

created a method for predicting seasonal CDDs and HDDs. 

This new technique creates a range of HDDs/CDDs that is significantly more 

accurate than simple frequency distributions of occurrences.  The predicted mean and 

standard deviations from the regression tree output were used to calculate 95% prediction 

intervals for each of the nodes.  Teleconnections were run through the trees to compute a 

predicted node, and then the new interval for the predicted node was used as the 

predictive range for the HDDs/CDDs for the particular forecast months (Objective 7). 

This new model verified, using 10 years of independent data withheld from the 

original data set (Objective 8), at an excellent 88% overall verification rate with 3 of the 

12 cities verifying at 100%.  Two other cities, which verified at the 90% significance 

level, failed in the randomly selected year of 1988.  This year is a well-known El Nino 

year and record temperatures were experienced in some parts of the U.S.  The summed 

CDDs for Minneapolis and WPAFB in 1988 fell outside the range of the original data set.  

Extrapolation of the model to fit the data outside the range of the original data set was not 

accomplished because the new fitted relationship may not have been valid for such 

outlier values.  Had the numbers for 1988 been in the original data set, the results may 

have been even better than they were with possibly two more cities verifying at 100%.  

An expected range reduction percentage over climatology was created from the 

calculated ranges.  An average expected forecast range reduction percentage of 35.7% 

was found in this study. 

The question of spatial homogeneity arose during this study, but the scope of this 

study could not focus on the aspect of spatial homogeneity.  However, because WPAFB 
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was included in the study, two cities, Cincinnati and WPAFB, were in close enough 

spatial proximity of each other to investigate the spatial homogeneity of the created 

prediction trees.  Cincinnati verification data were run through the WPAFB trees and the 

results were comparable to the WPAFB results.  Additionally, WPAFB verification data 

were run through the Cincinnati trees and the results were comparable to the Cincinnati 

results.  These results show spatial connections between the computed trees (Objective 

9). 

Overall this study attempted to improve upon the methods currently used to 

produce long-range forecasts of temperature over the U.S.  Excellent results were 

achieved and predictive tree tools were created which are deemed ready for users to use 

now for long-range temperature forecasts.  It is the conclusion of this study that this 

innovative method works.  It is also concluded that this method may be used to predict 

multiple atmospheric variables, well in advance, for most locations within the Northern 

Hemisphere. 

Recommendations 

 This study created a new technique in the way we can analyze atmospheric 

parameters.  The hope is that this study will be a stepping-stone to future research to fully 

understand the magnitude of this type of analysis.  Continuation of research on this study 

should be according to the following: 

1. Try to understand how the regression tree analysis relates to physical atmospheric 

synoptic circulation patterns.  Understanding further why the regression tree 

analysis splits where it does and why it uses the teleconnections in the order that it 

does. 
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2. Try to extract the model from the software in order to fully automate the 

technique.  The teleconnections are currently run through the trees manually to 

calculate the terminating node.  The new prediction intervals are created after the 

data calculated in the trees nodes are manually entered into a statistical 

spreadsheet.  The complete process needs to be automated. 

The research opportunities using this process are limitless.  Currently DoD is 

looking for long-range seasonal forecasts for parameters over Afghanistan.  This method 

could be used anywhere in the Northern Hemisphere.  This method could also be used to 

predict any parameter, to include the vital ones necessary in a wartime scenario, such as 

cloud cover, precipitation, and visibility.  This information could revolutionize long-

range prediction efforts to help with humanitarian aid operations for the timing and 

movement of supplies.  

 
46



Bibliography 
 

Anthes, R. A., 1986: The General Question of Predictability, Mesoscale meteorology and  
forecasting, P.S. Ray, Ed, American Meteorology Society, 636-656. 
 

Barnston, A. G., and R. E. Livezey, R. E. 1987: Classification, Seasonality and 
 Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly 
Weather Review, 115, 1083-1126. 
 

Baur, F., 1951: Extended-Range Weather Forecasting, Compendium of Meteorology, T.F. 
 Malone, Ed., American Meteorology Society, 814-833. 
 

Breiman et al., 1984: Classification and Regression Trees, Wadsworth International  
Group, 358pp. 

 
Burroughs, W. J., 1992: Weather Cycles Real or Imaginary? Cambridge University  

Press, 201pp. 
 

Burrows W. R. and R.A. Assel, 1992: Use of CART for Diagnostic and Prediction  
Problems in the Atmospheric Sciences, 12th Conference on Probability and 
Statistics in the Atmospheric Sciences, American Meteorology Society, 161-166. 
 

CPC, 2001: http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.html. 
 
Gleick, J. 1987: Chaos. Penguin books, 352pp. 
 
Glickman T. S., Editor, 2001: Glossary of Meteorology, American Meteorological 

 Society, 855pp. 
 

Horel, J. D., 1981: A Rotated Principal Component Analysis of the Interannual  
Variability of the Northern Hemisphere 500mb Height Field, Monthly Weather 
Review, 2080-2092. 
 

Horan, F., 1997: How much did the Gulf War cost the U.S?,  
http://comp9.psych.cornell.edu. 

 
Lowther, R. P., 1998: The Development of a Seasonal Climate Forecast Methodology for 

 ITCZ Associated Rainfall Applied to Eastern Africa.  PhD dissertation.  Texas 
A&M University, College Station TX, 127pp. 
 

Mapquest.com, 2001: http://www.mapquest.com. 
 

 

47

http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.html


Robinson and Henderson-Sellers, 1999: Contemporary Climatology.  Pearson Education  
Limited, 317pp. 

 
 
Rodionov and Assel, 2000: Atmospheric Teleconnection Patterns and Severity of Winters 

 in theLaurentian Great Lakes Basin,  Atmoshpere-Ocean, XXXVIII, 601-635. 
 
SPSS, 2001: AnswerTree 3.0 User’s Guide,  SPSS Inc. 226pp. 
 
USAF, 1991: Message Number 071659ZJAN91. 
 
Van Loon, H. and J. C. Rogers, 1979:  The seesaw in winter temperatures between 

 Greenland and Northern Europe, Part II: Some ocean atmospheric effects in 
middle and high latitudes,  Monthly Weather Review, 107, 509-519. 
 

Walker G. T. and E. W. Bliss, 1932:  World Weather, Memoirs of the Royal  
Meteorological Society. 4: 53-84. 
 

Wallace, J. M. and D. S. Gutzler, 1981:  Teleconnections in the Geopotential Height  
Field During the Northern Hemisphere Winter, American Meteorological Society, 
Monthly Weather Review, 109, 784-812. 
 

Washington, R., et al., 2000:  Northern Hemisphere Teleconnection Indices and the Mass  
Balance of Svalbard Glaciers, International Journal Climatology, 20, 473-487. 
 

Wilks D. S. 1995: Statistical Methods in the Atmospheric Sciences, Academic Press,  
467pp. 

 

48



Appendix: Regression Trees 
 
 

The appendix contains the regression trees used in this study, which can be used as a 

predictive tool.  They were created using May teleconnection indices and summed CDDs 

for June-August.  Using the predicted mean and standard deviation, prediction intervals 

are made for each valid node (n>5).  Overall, this prediction interval is 90% likely to 

contain the predicted HDDs/CDDs for the upcoming June-August with a 35.7% overall 

decrease in expected range over climatology. 
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Figure 18.  Atlanta regression tree. 
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Figure 18 (continued).  Atlanta regression tree. 
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Figure 19.  Chicago regression tree.
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Figure 20.  Cincinnati regression tree. 
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Figure 20 (continued).  Cincinnati regression tree. 
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Figure 20 (continued).  Cincinnati regression tree. 
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Figure 21.  Dallas-Fort Worth regression tree. 
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Figure 22.  DeMoines regression tree. 
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Figure 22 (continued).  DeMoines regression tree. 
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Figure 22 (continued).  DeMoines regression tree continued. 
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Figure 23.  Las Vegas regression tree. 
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Figure 23 (continued).  Las Vegas regression. 
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Figure 24.  Memphis regression tree. 
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Figure 25.  Minneapolis regression tree. 
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Figure 25 (continued).  Minneapolis regression tree. 
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Figure 26.  New York, LaGuardia regression tree. 
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Figure 27.  Philadelphia regression tree. 

 

 

 

66



 

Figure 27 (continued).  Philadelphia regression tree. 
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Figure 28.  Portland regression tree.
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Figure 29.  Sacramento regression tree. 
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Figure 29 (continued).  Sacramento regression tree. 
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Figure 30.  Tucson regression tree. 
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Figure 30 (continued).  Tucson regression tree. 
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Figure 31.  WPAFB regression tree.  
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Figure 31 (continued).  WPAFB regression tree.
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